Valvular myofibroblast activation by transforming growth factor-beta: implications for pathological extracellular matrix remodeling in heart valve disease.

نویسندگان

  • Gennyne A Walker
  • Kristyn S Masters
  • Darshita N Shah
  • Kristi S Anseth
  • Leslie A Leinwand
چکیده

The pathogenesis of cardiac valve disease correlates with the emergence of muscle-like fibroblasts (myofibroblasts). These cells display prominent stress fibers containing alpha-smooth muscle actin (alpha-SMA) and are believed to differentiate from valvular interstitial cells (VICs). However, the biological factors that initiate myofibroblast differentiation and activation in valves remain unidentified. We show that transforming growth factor-beta1 (TGF-beta1) mediates differentiation of VICs into active myofibroblasts in vitro in a dose-dependent manner, as determined by a significant increase in alpha-SMA and the dramatic augmentation of stress fiber formation and alignment. Additionally, TGF-beta1 and increased mechanical stress function synergistically to enhance contractility. In turn, contractile valve myofibroblasts exert tension on the extracellular matrix, resulting in a dramatic realignment of extracellular fibronectin fibrils. TGF-beta1 also inhibits valve myofibroblast proliferation without enhancing apoptosis. Our results are consistent with activation of a highly contractile myofibroblast phenotype by TGF-beta1 and are the first to connect valve myofibroblast contractility with pathological valve matrix remodeling. We suggest that the activation of contractile myofibroblasts by TGF-beta1 may be a significant first step in promoting alterations to the valve matrix architecture that are evident in valvular heart disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insights into serotonin signaling mechanisms associated with canine degenerative mitral valve disease.

Little is known about the molecular abnormalities associated with canine degenerative mitral valve disease (DMVD). The pathology of DMVD involves the differentiation and activation of the normally quiescent mitral valvular interstitial cell (VIC) into a more active myofibroblast phenotype, which mediates many of the histological and molecular changes in affected the valve tissue. In both humans...

متن کامل

Periostin is required for maturation and extracellular matrix stabilization of noncardiomyocyte lineages of the heart.

The secreted periostin protein, which marks mesenchymal cells in endocardial cushions following epithelial-mesenchymal transformation and in mature valves following remodeling, is a putative valvulogenesis target molecule. Indeed, periostin is expressed throughout cardiovascular morphogenesis and in all 4 adult mice valves (annulus and leaflets). Additionally, periostin is expressed throughout ...

متن کامل

Oleate induces a myofibroblast-like phenotype in mesangial cells.

OBJECTIVE High circulating free fatty acids, commonly associated with obesity and insulin resistance, impair structure and function of the microvasculature. However, the mechanisms by which fatty acids cause microvascular remodeling are unclear. Using the mesangial cell model of microvascular pericytes, we demonstrate that the monounsaturated free fatty acid oleate induces a myofibroblast pheno...

متن کامل

Mechanisms of Angiogenesisand Lymphangiogenesis in Calcific Aortic Valve Stenosis

Aortic valve stenosis (AVS) is the most common valvular disease in Western countries. Pharmacological prevention of AVS having proved unsuccessful, its current treatment is still valve replacement. The etiology of AVS is multifactorial, both genetic and external risk factors predisposing to the active pathological process eventually leading to clinically manifest stenosis. Histological features...

متن کامل

Modulation of transforming growth factor-β signaling and extracellular matrix production in myxomatous mitral valves by angiotensin II receptor blockers.

BACKGROUND Little is known about the pathophysiology of myxomatous degeneration of the mitral valve, the pathological hallmark of mitral valve prolapse, associated with symptomatic mitral regurgitation, heart failure, and death. Excess transforming growth factor (TGF)-β signaling is known to cause mitral valve degeneration and regurgitation in a mouse model of Marfan syndrome. We examined if TG...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 95 3  شماره 

صفحات  -

تاریخ انتشار 2004